中子技术 轮廓法 数值模拟



? ??

? ??我们的世界和宇宙不断地令人着迷、好奇和感到惊喜。我们可以向植物和动物学习许多解决常见问题的办法,并且可以通过研究行星的地质及其自然发展过程,来加深对地球在宇宙中所处位置的认识。利用中子散射技术,能为农作物育种和医药提供新思路,并为行星科学研究带来全新的视角。

? ? Our world and universe continue to fascinate, intrigue and surprise. We can learn many lessons from plants and animals on how to solve common problems and gain deeper understanding of our place in the universe by studying the geology and natural processes of the planets. Neutron scattering is being used to offer new potential for crop breeding and medicines, and to bring new insights to planetary science.

一、纺织纱线 Spinning Yarns

? ? 蜘蛛丝的强度是钢的5倍,所能吸收的能量是防弹衣材料的3倍以上。蜘蛛是用以胶滞体形式储存在他们体内特殊丝腺中的水和蛋白质混合物来纺丝的。随着这种胶滞体被从蜘蛛的丝腺中拉出,它就变成了非常具有弹性的丝线,这种丝线在广大的工业领域中可能会有许多潜在的用途。如果我们能制造出人造丝,我们就可以利用其强度和弹性,开发新型塑料和生物植入材料。

? ? Spider-silk is five times as strong as steel and absorbs three times more energy than the material used in bullet-proof vests. Spiders spin silk from a mix of water and proteins stored as a gel in specialized silk glands inside their bodies. As the gel is pulled through their spinning glands it becomes a very resilient solid that could have many potential uses in the industrial world. The strength and elasticity of silk could be harnessed for new plastics and biomedical implants if it could be made artificially.

? ? 中子散射技术在研究人造丝方面发挥着重大作用。利用为研究生物材料所调试的中子束,科研团队正在研究蜘蛛体内的胶滞体在转变成蜘蛛丝时,原子层面上结构的改变。所做的实验已经解答了一些疑惑,并将继续揭示更多的自然界中的奥秘。

? ?Neutron scattering is playing a key role in discovering how silk can be made artificially. Research teams are using neutron beams tuned for studying biological materials to shine a light on the atomic scale structural changes as the gel transforms into solid fibre. Experiments have unlocked some answers, and continue to reveal more of nature’s secrets.

? ? 我们一直在探寻自然界是如何创造出如此神奇的物质的。中子散射恰恰是能够帮助我们了解蜘蛛这一魔幻技能的完美技术。

—— Chris?Holland博士


? ? We are asking how?nature makes such amazing materials. Neutron scarttering is an excellent technique for understanding the spider's magic tricks.

——?Dr. Chris?Holland

Oxford University Silk Group

二、零度以下的生存 Sub-zero survival

? ? 蜥蜴作为冷血动物,对自身体温的调节能力非常有限。它们的体温伴随着冬天气温的下降而下降,因此身体组织和细胞就可能遭受由于体内结冰而带来的不可修复的损伤。为防止细胞内部和细胞之间致命冰晶的形成,蜥蜴调动像丙三醇(甘油)那样的化合物来降低水分结冰的温度。在持续的零下温度环境里,细胞活动就会暂时停止,直至温度再次回升,正常的细胞活动就能安全地恢复。

? ? Cold-blooded lizards have only limited ability to regulate their own body temperature. When temperatures fall in winter, so does their body temperature, putting tissues and cells at risk of irreparable damage from internal ice. To prevent lethal ice crystals forming in and between cells in their body, lizards use chemical compounds such as glycerol to reduce the freezing temperature of water. During prolonged exposure to sub-zero temperatures, cell activity is paused until temperatures rise again and normal activity can safely resume.


? ? 中子散射实验所采集的分子结构信息,向我们展示了将丙三醇与水混合后,它是如何防止坚硬冰网形成的。这个对于丙三醇作用的一个新的基本了解,将有许多应用价值。对蜥蜴如何在低温环境下生存的一个新的认识,会有助于发展食物储藏、生育治疗和药物运输等技术。

? ? Molecular structure data collected with neutron scattering shows how mixing glycerol with water prevents rigid ice networks from forming. This new fundamental understanding of the role of glycerol will be helpful in a range of applications. Food storage, fertility treatment and transporting medicines could benefit from a new understanding of how lizards survive at low temperatures.

? ? 提高对蜥蜴低温环境下生存的基本认知,可能有助于我们提高在生育治疗中的组织存储和恢复、制药行业中的药品储存、手术所需的器官运输以及农业食物储藏等方面的技术水平。

—— Lorna Dougan博士


? ? Improving our fundamental knowledge of lizard cryopreservation may lead to improved storage and recovery of tissue for fertility treatment, better storage of drugs in the pharmaceutical industry and transport of organs for surgery, and better storage of food in the agricultural industry.

—— Dr.?Lorna Dougan

Universityof Leeds

、抗病害作物 Disease resistant crops

? ? 鉴于粮食的产量受到气候变化、虫害、病害和人口增长等问题的挑战,英国乃至全世界都在十分关注食品安全问题。由于病虫害,全世界每年损失1/4的农作物。因此,习得植物的自我防御手段或许是减少粮食损失的一种有效方式。诸如黑麦、大麦、燕麦和小麦等常见作物,能够自生抗菌蛋白,用来抵御病害、霉菌和细菌。小麦的防御蛋白还有另外一个作用:它能提供决定小麦加工特性的胚乳组织,具有重大经济价值。

? ? Food security is becoming a major concern in the UK and across the world, as harvest yields are challenged by climate change, pests, diseases and the demands of arising world population. A quarter of the world’s crops are lost to pests and disease. Understanding how plants defend themselves could be one way to reduce losses. Common crops like rye, barley, oats, and wheat make antimicrobial proteins to defend themselves against disease, fungi and bacteria. In wheat, the defence proteins play an additional role in giving the endosperm texture, an economically important quality that determines the milling characteristics of the wheat.


? ? 食品科学家们利用中子散射技术研究防御蛋白的分子运动,及其与入侵物细胞膜间的相互作用。他们能够直接观察防御蛋白是如何穿透细胞膜,进而杀死入侵细菌,或者剥落入侵细菌表面的致命成分。

? ? Food scientists are using neutron scattering to learn about the molecular action of defence proteins and their interaction with the cell membranes of invaders. They can watch defence proteins punch their way through a cell membrane to kill hostile bacteria or strip vital components from its surface.

? ? 抗菌作物的防御蛋白有助于提高各类转基因作物的抗病能力和粮食产量。随着区域性气候的变化,这个认知也能够帮助农民和育种人员调整作物,以应对气候模式的转变。

? ? Anti-microbial plant defence proteins could be used in transgenic crop species to increase disease resistance and food yield. As regional climates change, this knowledge will also help farmers and breeders to adapt plants to counteract shifting weather patterns.

、行星科学 Planetary science

? ??

? ? 人造卫星对巨型气态行星木星和土星的多次探测显示,我们的太阳系拥有多种多样的天体,各自都有着复杂多样的演变历史。因此,揭示行星和卫星的演变过程是地球和行星科学的主要挑战之一。

? ? Satellite missions to the giant gas planets Jupiter and Saturn have revealed that our Solar System displays a rich variety of bodies, each with a complex and diverse evolutionary history. Therefore, understanding the evolution of the planets and moons presents one of the major challenges in Earth and planetary sciences.


? ? 地质学家们开发了新颖的高压中子散射实验,用于模拟地球内部环境或者预测太阳系中冰冷卫星的地质情况。英国和法国大学的课题组,为中子散射仪器,联合研发了能够通过挤压对岩石和其他材料施加极高压力的特殊设备。这样的高压能够再现Titan(土卫六,土星最大的卫星)内部的环境,或者地球700km深处地幔中的情形。通过中子散射实验所得到的精确数据,能够让行星科学家们更好地解读从航天器上拍摄到的地表图像所呈现的地质情况,或为地球上所记录下来的地震数据提供无懈可击的解释。

? ? Geologists have developed novel high-pressure neutron scattering experiments to model the Earth’s interior or predict the geology of the icy moons of the Solar System. Unique equipment developed by university groups in the UK and France for neutron scattering instruments can squeeze rocks and other materials to very high pressures. These high pressures reproduce the conditions found inside Titan, Saturn’s largest moon, or inside the mantle of the Earth at depths of up to 700km. The precise data derived from neutron scattering experiments allows planetary scientists to better interpret the geology seen in surface images taken from spacecraft, or create robust interpretations of seismic data recorded on Earth.

copyright ? 2016 澳彩 bet356 等_bet356怎么用中文_bet356官网app .All Rights Reserved.?????粤ICP备16087785号-1